

Center for Satellite and Hybrid Communication Networks

Modulation, Coding and Interference Cancellation for Satellite Communications

• **Faculty:** E. Geraniotis, A. Ephremides

• **Research Staff:** M. Hadjitheodosiou

• Graduate Students: H.J. Su, C.H. Yih, H. ElGamal, M. Khairy,

W.C. Chan

• **Industry Support:** M. Gerakoulis (AT&T), K. Etemad (HNS),

S. Chuprun (Motorola)

• Other Sponsors: AT&T, HNS, Nortel, Philips, TSI, NASA, NRL,

ONR, ARL ATIRP

Industry Advisory Board Meeting February 17, 1999

Support for NASA Missions: Objectives and Significance

• Objectives:

- Increase transmission rate of SATCOM for multimedia applications
- Increase total capacity (number of circuits supported) and total throughput (Mbps)
 of SATCOM communication
- Guarantee low BERs for multimedia services while satisfying time-delivery requirements
- Lower transmitted power and antenna size requirements
- Mitigate/eliminate in-band interference to alleviate power, size requirements and coexistence/proximity

• Significance:

- Higher throughputs and transmission rates can be provided for ISS to Earth communication
- Higher throughputs and transmission rates can be supported for communication between ISS and LEO/MEO/GEO satellite networks
- Higher transmission rates possible for Deep Space missions
- Smaller antenna sizes needed for both earth stations and spacecrafts or satellites
- Smaller size, weight and power of SATCOM terminals

Commercial Objectives and Significance

• Objectives:

- Increase transmission rate of SATCOM for multimedia applications
- Increase total capacity (number of circuits supported) and total throughput (Mbps) of SATCOM communication
- Guarantee low BERs for multimedia services while satisfying time-delivery requirements
- Lower transmitted power and antenna size requirements
- Mitigate/eliminate in-band interference to alleviate power, size requirements and coexistence/proximity

• Significance:

- Higher throughputs and transmission rates enabled
- More subscribers served
- Additional multimedia services offered
- Greater coverage provided
- Transmitted power and antenna size requirements lowered
- Increased on-board processing and switching capabilities enabled
- More satellite networks can co-exist (proximity issues)
- Reception reinforcement (inside buildings)
- Reliable broadcast/multicast to users with different reception capabilities

Areas of Research Focus

- Techniques for almost coherent demodulation in SATCOM inbound Links
- Turbo codes and iterative decoding for satellite communications
- Turbo TCM (Trellis-Coded Modulation) for M-PSK and M-QAM for high data rate SATCOM
- Adaptive closed-loop power control for SATCOM
- Adaptive coding and adaptive modulation for rain fades
- Asymmetric modulation and coding for Broadcast/Multicast SATCOM
- Unequal error protection for Multicast SATCOM with multilevel reception capabilities

Areas of Research Focus (Cont.)

- Diversity combining with iterative decoding for SATCOM signals
- Joint diversity combining and handoff for SATCOM signals
- Interference Suppression
 - Co-channel interference mitigation (for TDM-, FDM- and OFDM-based SATCOM systems)
 - Adjacent-channel interference mitigation (for TDM-, FDMand OFDM-based SATCOM systems)
 - Other-user interference suppression/Multi-user detection (for CDMA-based SATCOM systems)

Applications/Funded Projects (Last 4 years)

- Soft handoff and dual satellite (diversity) combining for LEO SATCOM (Globalstar/Loral)
- High Data Rate GEO SATCOM Network: VoiceSpan (K_u FCC Filing by AT&T)
 - SE/CDMA modem design
 - Earth station (hub) design
 - On-board signal processor design
 - On-board CDMA switch design
- DS/CDMA modem design for GEO SATCOM (TSI Inc.)

Applications/Funded Projects (Last 4 years) (Cont.)

- DS/CDMA modem and earth station design for Navy fleet SATCOM (NRL)
- Multi-level reception for broadcast/multicast
 SATCOM (ONR)
- Digital Audio Broadcast Satellite Systems (DABS)
 design [WorldSpace Manag. Inc (TDMA), CD Radio
 Inc (CDMA).]

Almost Coherent Demodulation for Inbound SATCOM Links

- Issue: Coherent demodulation in inbound SATCOM links is impaired by
 - Channel fading
 - Doppler frequency shift (for mobile terminals)
- Solution/Our Approach: Pilot-aided or symbol-aided demodulation (PAD or SAD) with iterative decoding
 - Use pilot signals or insert (periodically) known symbols during transmission
 - Estimate channel amplitude and phase from pilots or known signals; use filtering and smoothing
 - Extrapolate amplitude/phase estimates for unknown symbols from above estimates of known symbols
 - Use iterative decoding (feedback soft decoder outputs to above filters) to enhance estimation accuracy
 - Demodulate (almost coherently) the unknown symbols using the enhanced channel estimates
 - Use approach for both convolutional and Turbo codes
 - For fast fading (large Doppler) use MDD (multiple differential detection) coupled with iterative decoding

High-Order Modulation for High Data Rate SATCOM

- Goal: Increase spectral efficiency (bits/sec/Hz) through use of high-order modulation (M-PSK or M-QAM) while still guaranteeing low BER
- Difficulties:
 - M-QAM is more power efficient than M-PSK but suffers more from nonlinear distortion introduced by transponder amplifiers
 - M-PSK and M-QAM have worst BER (bit error rate) than BPSK or QPSK
- Solution/Our Approach: Turbo Trellis Coded Modulation (TCM) and iterative decoding
 - Use of Turbo TCM guarantees low BERs for M-PSK and M-QAM
 - Combine pre-distortion techniques with iterative decoding for mitigating nonlinear effects
 - Use Turbo equalization to suppress effectively ISI
 - For delay-sensitive traffic (voice), use TCM with convolutional (not Turbo)
 codes; retain iterative decoding for nonlinearity mitigation and equalization

Turbo Codes for SATCOM Applications

- Goal: Lower the transmitted power (or use smaller size antenna) through the use of more powerful FEC (Forward Error Control Codes) such as Turbo Codes
- Difficulties: Additional processing delay of Turbo codes prevents their use for delay-sensitive traffic (e.g., voice)
 - Turbo codes use internal interleaver (introduces buffering delay)
 - Turbo codes use iterative decoding (decoding delay proportional to number of iterations)
 - For fading channels Turbo codes lose some of their advantage over convolutional codes

Turbo Codes for SATCOM Applications (Cont.)

- Solution/Our Approach: A new class of Turbo codes that require shorter internal interleavers; decoding algorithms that minimize number of required iterations
 - Use special interleaver design based on block codes
 - Use search decoding strategy rather than MAP or log-MAP decoding
 - Our approach works with both Parallel and Serial Concatenated Convolutional Codes (PCCC and SCCC architectures of Turbo codes)
 - Our Turbo codes do not exhibit an error floor
 - Our codes (with an 70- to 80-bit interleaver) outperform standard Turbo codes (with 1000-bit interleaver) for E_b/N_0 's larger than 2.5 dB and BERs lower than 10^{-5} [for AWGN channel]
 - For fading channels, modify Viterbi, MAP, or search decoding metrics to account for fading statistics

New Interference Suppression Techniques for SATCOM Applications

- Goal: Mitigate in-band interference present at terminals and earth stations of SATCOM systems
- Difficulties:
 - Signal processing power at terminals is limited
 - Real-time/delay-sensitive traffic can not tolerate delay introduced by excessive processing
 - Signals that must be cancelled may be (fully or partially) unknown and must be estimated
 - Received powers of signals may vary significantly

New Interference Suppression Techniques for SATCOM Applications (Cont.)

- Solution/Our Approach: Use recent advances in multi-user detection and signal separation techniques coupled with the iterative decoding principle of Turbo codes
 - For <u>co-channel interference</u> mitigation (TDM, FDM or OFDM systems)
 use a combination of subspace separation, oversampling and
 identification techniques coupled with soft decoder output feedback
 - For <u>adjacent-channel interference</u> mitigation (TDM or FDM systems) use filtering and channel identification coupled with iterative decoding
 - For <u>other-user interference</u> cancellation (CDMA systems) use iterative decoding to assist both an MMSE-based other-user interference canceller and the (pilot- or symbol-aided) estimator of the channel amplitudes and phases of all users
 - Variants of our approach are applicable to scenarios where <u>some but not</u> all of the <u>signals</u> to be cancelled are demodulated and decoded